博客
关于我
博弈论讲解(二)
阅读量:164 次
发布时间:2019-02-27

本文共 657 字,大约阅读时间需要 2 分钟。

斐波那契博弈

游戏规则

有一堆数量为n的石子,游戏双方轮流取石子,满足以下条件:

  • 先手不能在第一次将所有石子取完;
  • 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。
  • 约定取走最后一个石子的人为赢家。

    必败态

    当n为斐波那契数时,先手必败。

    证明

    齐肯多夫(zeckendorf)定理:任何正整数都可以表示成若干个不连续的斐波那契数(不包括第一个斐波那契数)之和。

    例如,n=54可以写成:n=2+5+13+34。

    • 先手A取2个,后手B在1~4范围内取石子。由于B必须至少取1个,最多取4个,但5已经被A取走了,因此B只能取5的最后一个。
    • 接下来,A可以拿走13的最后一个,接着拿走34的最后一个,这样A就赢了。

    反之,如果n是斐波那契数,A无法阻止B按照斐波那契数规则取走最后一个石子,从而让B获胜。

    尼姆博弈

    游戏规则

    有三堆石子,数量分别为(a, b, c)。两个人轮流从某一堆中取任意多的石子,规定每次至少取一个,多者不限。最后取光者得胜。

    必败态

    如果三堆石子数量的异或(a ^ b ^ c)为0,则先手必败;否则先手必胜。

    证明

    略述。

    代码

    for(int i = 1; i <= n; i++) {    sum ^= ans;}if(sum == 0) {    cout << "后手必胜";}

    公平组合博弈

    公平组合博弈属于Impartial Combinatorial Games,属于Nim游戏的一种变种。其核心是通过数学模型确定必败态和必胜态。

    转载地址:http://ymwb.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0050---Netty核心模块1
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty常见组件二
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty核心模块组件
    查看>>
    Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
    查看>>
    Netty源码—2.Reactor线程模型一
    查看>>
    Netty源码—4.客户端接入流程一
    查看>>
    Netty源码—4.客户端接入流程二
    查看>>
    Netty源码—5.Pipeline和Handler一
    查看>>
    Netty源码—6.ByteBuf原理二
    查看>>
    Netty源码—7.ByteBuf原理三
    查看>>
    Netty源码—7.ByteBuf原理四
    查看>>
    Netty源码—8.编解码原理二
    查看>>
    Netty源码解读
    查看>>
    Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
    查看>>
    Netty相关
    查看>>
    Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
    查看>>
    Network Sniffer and Connection Analyzer
    查看>>
    NetworkX系列教程(11)-graph和其他数据格式转换
    查看>>